McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.
McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.
Mondal, P. K., Foysal, K. H., Norman, B. A., & Gittner, L. S. (2023). Predicting
Childhood Obesity Based on Single and Multiple Well-Child Visit Data
Using Machine Learning Classifiers. Sensors, 23(2).
Moret, B. M. E. (1982). Decision Trees and Diagrams. ACM Comput. Surv., 14(4),
593–623.
Müllner, D. (2011). Modern hierarchical, agglomerative clustering algorithms.
Odhiambo, P., Okello, H., Wakaanya, A., Wekesa, C., & Okoth, P. (2023).
Mutational signatures for breast cancer diagnosis using artificial intelligence.
Journal of the Egyptian National Cancer Institute, 35(1).
Park, J., Müller, J., Arora, B., Faybishenko, B., Pastorello, G., Varadharajan, C.,
Sahu, R., & Agarwal, D. (2023). Long-term missing value imputation for
time series data using deep neural networks. Neural Computing and
Applications, 35(12), 9071 – 9091.
Pérez, C., & Santín, D. (2008). Minería de datos. Técnicas y herramientas.
Madrid: Paraninfo. Revista Lasallista de Investigación-Árboles de Decisión
Como Metodología Para Determinar El Rendimiento Académico En, 104.
Queen, J. Mac. (1967). Some Methods for Classification and Analysis of
Multivariate Obser- vations. Roceedings of the 5 Th Berkeley Symposium
on Mathematical Statistics and Proba- Bility, 281–297.
Ramírez, C., Orallo, J. H., & Quintana, J. R. (2004). Introducción a la Minería de
Datos (1st ed.). Pearson.
Rezayi, S., Maghooli, K., & Saeedi, S. (2021). Applying Data Mining Approaches
for Chronic Kidney Disease Diagnosis. International Journal of Intelligent
Systems and Applications in Engineering, 9(4), 198–204.
Russell, S. J., & Norvig, P. (1995). Learning in Neural and Belief Networks. In I.
Prentice-Hall (Ed.), Artificial Intelligence A Modern Approach. Alan Apt.